基于局部定向模式的CLDP算法改進(jìn)人臉識(shí)別性能
LDP 算法是將與Kirsch 算子運(yùn)算后得到的一些負(fù)值的鄰域灰度值作為中心灰度值的編碼因子,這將會(huì)導(dǎo)致中心灰度值不能很好的反映鄰域局部特征信息,從而降低識(shí)別率。針對(duì)于此,本文提出了一種改進(jìn)的局部定向模式(CLDP)算法。該算法在LDP 的基礎(chǔ)上,去掉鄰域灰度值為負(fù)值的因子,對(duì)中心灰度值進(jìn)行重新編碼,由于該編碼值是將與Kirsch 算子運(yùn)算后的正值最大值作為圖像邊緣輸出,使中心灰度值能很好反映鄰域的局部特征信息,從而提高...